Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1237720230560010069
Anatomy & Cell Biology
2023 Volume.56 No. 1 p.69 ~ p.85
Boophone disticha attenuates five day repeated forced swim-induced stress and adult hippocampal neurogenesis impairment in male Balb/c mice
Xhakaza Nkosiphendule Khuthazelani

Nkomozepi Pilani
Mbajiorgu Ejekemi Felix
Abstract
Depression is one of the most common neuropsychiatric disorders and is associated with dysfunction of theneuroendocrine system and alterations in specific brain proteins. Boophone disticha (BD) is an indigenous psychoactive bulb that belongs to the Amaryllidacae family, which is widely used in Southern Africa to treat depression, with scientific evidenceof potent antidepressant-like effects. The present study examined the antidepressant effects of BD and its mechanisms of action by measuring some behavioural parameters in the elevated plus maze, brain content of corticosterone, brain derived neurotropic factor (BDNF), and neuroblast differentiation in the hippocampus of Balb/c mice exposed to the five day repeated forced swim stress (5d-RFSS). Male Balb/c mice were subjected to the 5d-RFSS protocol to induce depressive-like behaviour (decreased swimming, increased floating, decreased open arm entry, decreased time spent in the open arms and decreased head dips in the elevated plus maze test) and treated with distilled water, fluoxetine and BD. BD treatment (10 mg/kg/p.o for 3 weeks) significantly attenuated the 5d-RFSS-induced behavioural abnormalities and the elevated serum corticosterone levels observed in stressed mice. Additionally, 5d-RFSS exposure significantly decreased the number of neuroblasts in the hippocampus and BDNF levels in the brain of Balb/c mice, while fluoxetine and BD treatment attenuated these changes. The antidepressant effects of BD were comparable to those of fluoxetine, but unlike fluoxetine, BD did not show any anxiogenic effects, suggesting better pharmacological functions. In conclusion, our study shows that BD exerted antidepressant-like effects in 5d-RFSS mice, mediated in part by normalizing brain corticosterone and BDNF levels.
KEYWORD
Depression, Antidepressant agents, Hippocampus, Corticosterone, Fluoxetine
FullTexts / Linksout information
  
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI) KoreaMed